If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=56
We move all terms to the left:
a^2-(56)=0
a = 1; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·1·(-56)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*1}=\frac{0-4\sqrt{14}}{2} =-\frac{4\sqrt{14}}{2} =-2\sqrt{14} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*1}=\frac{0+4\sqrt{14}}{2} =\frac{4\sqrt{14}}{2} =2\sqrt{14} $
| 3(x−1)(x+2)(x−3)2=0 | | -5p+7+6p=10 | | 15*x=12 | | (8+4i)—(4—4i)=(8—3)+(4—(—4)i)=5+8i | | 144n=360 | | 150000=2.5x-x | | 3x/4×4=42 | | ⅖a+7=11 | | 5(x+2)/4=2x-5 | | 3x/4+4=42 | | 5(x+2)/4=6x-1 | | 4p-1/3-3p-1/2=5-2p/4 | | 10x/4=6x-1 | | x^2-22x=135 | | -4+x/4=-6+3x/4 | | 3x-42÷5=2x | | 7(b+4)-3(b+6)=18 | | -4p-20=30-12p | | 0.5x+5.5=10.5 | | (-4x+3)(5x+10)=0 | | 3x+1=2(x+2)+x | | A^2-b^2=2 | | 2x+6+4x+10=2 | | 8x+8x=18 | | 3x+1=2x+4+x | | x2-289=0 | | 3y+9y=108 | | −739=13y | | 2(1.04^x)-1.06^x=1 | | 93°(5x+12)°=90 | | 4p=234 | | 4x=234 |